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Abstract

The conditions for resonance interaction
hetween two instability waves in an axisymmetric
jet were investigated. Considerations of the
energy equation of the wave resulting from the
interaction indicate that the phase angle between
the wave-induced stresses and the wave-induced
strains plays a crucial role in the resonance
interaction. This fact is demonstrated experimen-
tally by e«citing a jet at fundamental and sub-
harmonic frequencies. The phase angle between the
waves' strasses and strains was varied by varying
the initial phase-difference between the two exci-
tation waves. The subharmonic resonance was found
to be highly dependent on this angle. Favorable
agreement was found between the phase angles pre-
dicted by a nonlinear theory and the measured ones.
The theory is used to explain the subharmonic's
resonance in terms of the phase-angles.

Introduction

The recent investigations of Raman, Rice, and
Mankhadi (1988) has indicated that improving jet
mixing through single frequency excitation has its
limitaticns. Increasing the amplitude of the
imposed excitation at a given Strouhal number
increases the growth of the momentum thickness of
the jet up to a certain level of excitation. Fur-
ther increase in the excitation level results in a
saturation condition beyond which no further
increase in jet mixing can be achieved. The exper-
imental observations of Zaman and Hussain (1980)
and Ho and Huang (1982) have indicated that a reso-
nance mechanism can occur by which a subharmonic of
the fundamental amplifies. The theoretical inves-
tigation of Mankbadi (1985) has further indicated
that this subbarmonic plays a crucial role in con-
trolling tne spreading rate of the jet. Therefore,
the present work is concerned with understanding
the conditions at which resonance interaction
occurs. By properly choosing the initial condi-
tions one may be able to produce resonance interac-
tions and thus achieve further control of jet
spreading over that which can be achieved under a
single frequency excitation.

The resonance of the subharmonic resulting
from its interaction with the fundamental is sub-
ject to several parameters such as the Strouhal
numbers, the initial levels of both the fundamental
and the subharmonic, the turbulence level, and the
initial mean velocity profile. Furthermore, for
the two-dimensional shear layer Kelly (1967),
Zhang, Ho, and Monkewitz (1984) and Monkewitz
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(1988) have indicated that the interaction between
the fundamental and the subharmonic is highly
dependent on the initial phase-difference between
the two waves. Therefore, in a round jet under
two-frequency excitation one may expect this phase-
difference to play an important role in the subhar-
moni¢c resonance and in jet mixing.

Cohen and Wygnanski (1987) examined the condi-
tions for resonance interactions between two insta-
bility waves. Their analysis is based on assuming
a nondivergent mean flow. The two interacting
waves are small with respect to the mean flow and
the wave resulting from the interaction of the two
waves is much smaller in amplitude than any of the
two waves. By examining the second order terms in
the momentum equation, the condition at which the
particular solution becomes "secular" is to satisfy
one of the following conditions:

wp = wg + Wk, Nm o= Ng + Ni; am = ag + ak
or
wp = Wk - Wy, Nm = Nk - Ng; ap = ak - a)

where w s the frequency, n is the azimuthal
wave number and « is the complex wave number.
Subscripts k and 9 denote the interacting waves
while m denotes the resulting wave. Cohen and
Wygnanski (1987) have taken these approximate con-
ditions as the resonance condition.

In this work we re-examine the conditions for
resonance interactions for a diverging jet based on
the energy equation of the wave resulting from the
nonlinear interaction. The conditions on the fre-
guency and azimuthal dependency are found to be the
same as those of Cohen and Wygnanski (1987). How-
ever, the condition on the wave numbers is replaced
by a condition on the phase angle between the wave-
induced stresses and the wave-induced strains. To
demonstrate experimentally the dependency on this
phase angle a round jet is excited at a fundamental
and its subharmonic. The phase-difference between
the two imposed waves is measured along the jet for
different initial phase differences. Measurements
of the phase angles are used to verify a nonlinear
theory for predicting the phase angle. The latter
theory is then used to provide a better understand-
ing of the conditions for resonance interactions.

Energy Considerations of the Wave Interactions

In the following we examine the waves' energy
exchanges. We consider the incompressible flow of
a round jet at high Reynolds numbers. The effects
of viscosity and the turbulence are ijgnored in the
present analysis.

The Mean Flow-Wave Interactions

We split the velocity components into mean
and periodic components:
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J, 00Tt - Ulx,r,¢) + U(x,r,¢,t)
and 2.1)
P(x,r,0,t) = P(x,r,¢) + pix,r,¢,t)

dy, 1 =1, 2, 3 are the velocity components in the
axial, radial and azimuthal directions, respec-
tively and P s the pressure. (-) denotes time-
averaging while (~) denotes a periodic component.
The periodic component is written in terms of Four-
ier components as:

ai(x,r,¢.t) = Ui mOx,r) expl-iupt + Tngdd
+ Ui gOx,r) exp(-iwgt + ing)
+ Ui k(x,m) expl-ugt + ingd) + C.C. 2.2)

denotes a complex conjugate. w s

is the azimuthal number. The
2 denote the input waves while
denotes the wave produced by

where C.C.
the frequency and n
subscripts k and
the subscript m
interaction.

To derive the mean flow energy equation, the
decomposition (2.1) is substituted in the full
momentum equation. The full momentum equation is
then time-averaged and the boundary-layer-type
approximations are applied to the mean quantities.
Upon integrating over r, the mean flow energy
equaticn takes the form:

16 PP g o
T jO U rdr = _IO uvagrr dr

2.3

Thus, the waves can influence the mean flow only
through their time-averaged Reynolds shear stress.
Aith the Fourier decomposition (2.2), the time-
averaged wave Reynolds shear stress reduces to:

av = UpVm = YgVg * ukvi + uQv& exp[-i(wQ - )t
+ i(nQ - nm)¢] + ukva exp[-i(mk - mm)t
+ i(nk - nm)¢]+ uQvi exp[-i(wﬁ - wk)t
+ i(nQ - nk)Q] + C.C. (2.4)
#here C.C. or (*) denote a complex conjugate.

The terms appearing in the above expression with
dependency on (¢) are generally zero except in the
special case where two of the waves have the same
frequency but different azimuthal numbers. Ffor
this particular case, these azimuthaly-dependent
terms take the form:

uQv; exp[i(nQ - nk)¢] + C.C.

[f integrated over ¢ such a term averages to zero
indicating that these terms do not contribute to
the total mean flow energy in a slice of the jet.
These terms only contribute to the azimuthal redis-
tribution of the mean flow energy in the jet.
Equation (2.4) also indicates that single excita-
tion with nonaxisymmetric waves cannot disturb the
axisymmetry of the mean flow. These conclusions
regarding the effect of waves on the mean flow are
identical to those of Cohen and Wygnanski (1987).

Energy of the Wave Resulting from the Interaction

We derive here the energy equation of the
m-wave resulting from the interaction of the
k-wave and the Q-wave. The time-averaged mcmentum
equation is subtracted from the phase-averaged one.
The resulting momentum equation is multipltied by
the corresponding velocity component of frequency
w and the three components of the momentum equa-
tions are added and time averaged. The resulting
equation is integrated over the radius and the
boundary layer-type approximations are applied to
the mean quantities. The final form of the inte-
gral energy equation of the m-wave is:

4 [y T lss
dXJUerdr-Jo—umvmarrdr

™ au.

~ - i,m
+J‘ u. U, —— r dr
0 .27,k axj
where
Qy = 051312+ 1912 + 1#17] 2.5

The first term in the right hand side of the above
equation is the energy exchange between the wave
and the mean flow. The second term in the right
hand side is the wave-wave energy exchange. This
term will be denoted here by WHW.

We view the resonance interaction of the two
imposed periodic components as when the wave-wave
energy exchange KWW is maximum. Therefore, in the
following we examine the conditions at which this
term is maximum. MWith the Fourier decomposition
given in (2.2) this term is identically zero except
if the frequency w satisfies one of the following
two conditions:

) w_ = W - W In this case

m

_ . AU,
W = J ui.Quj,K —5%fm exp[i(nQ - nm)¢]
J

x r dr d¢ + C.C. (2.6a)
b) Wp T W+ Wy In this case
au.
WH = J u;,Qu‘j,k _5&39 exp[(—nQ -+ n)¢]
x r dr d¢ + C.C. (2.6b)

If integrated over ¢, WW as given by equa-
tion (2.6) integrates to zero except in the spe-

" ctal case where the argument of the exponential

function is zero. This term thus only redistribute
azimuthally the wave energy. For a nonzero wave-
wave energy in a slice of the jet the azimuthal
number of the resulting wave must satisfy one of
the following conditions:

(2.73)



2.7b

To examine the conditions on the x-dependency for

resonance interaction we write:
udx,r) = u{r)F(x) + C.C.

u(r) can be obtained as the eigenfunction of the
locally parallel linear stability equation for each
wave. F(x) is the complex amplitude of each wave
which can only be determined from a nonlinear

analysis. We can write F(x) as:
FOx) = {/EQO expliyt)) + C.C.
VEGO  is the magnitude of the amplitude. With

proper normalization of the eigenfunctions, E(x)
represents the energy of the wave across the jet.
¢(x) is the phase angle of the wave's energy
amplitude.

Let us denote the case where Eqs. (2.6a) and
(2.7a) are satisfied as case I and the case where
Eqs. (2.6b) and (2.7b) satisfied as case II. For
both cases the wave-wave energy exchange can be

written as:
WH = ‘/Ek(x)Em(x)EQ(x) IIN| cos(y) (2.8)
where
SEPURPN N .
*
IN = Ui,Quj.k —5;f— r dr for case I
0
> - G! m
- * *
= fo ui,Q“j‘k —5;f— ragr for case II
and
Y=, t ¥y -t O for case I
for case II

o is the phase angle of I. We examine now the
x-dependency of WW as given by Eq. (2.8) Iy is
obtained from the local linear stability theory

for a given set of Strouhal numbers. For the case
of fundamental subharmonic interaction this func-
tion is shown in Fig. 1. The axial dependency is
replaced here by the momentum thickness which is a
function of the axial location (x). The Strouhal
number shown on the figure is that of the fundamen-
tal. For a given Strouhal number, the wave-wave
interaction is a function of Iy, its phase o, and
the energy of each wave (Eq. 2.8). The figure
shows that the general trend of Iy is to decrease
with increasing the momentum thickness. Thus, the
smaller the initial momentum thickness, the
stronger the wave-wave interaction can be. As

Eg. (2.8) indicates, the wave-wave interaction is
proportional to the product of the energy levels

of the three waves. These levels are dependent on
their initial levels, among other parameters.
Therefore, small amplitude excitation may not
produce resonance interactions even if all other
conditions are met. Finally, we consider the
dependency of the wave-wave interaction on the

angle (y). All functions appearing in Eq. (2.8),
except cos (y), varies monotonically with x. In
general cos (y) has an oscillatory nature that can

cancel the wave-wave interaction if integrated over
x. To achieve resonance interactions, the argument

of the cosine should ideally be zero. This condi-
tion can be written as:
Y =¥ ~ ¥y - O for case I
(2.9
for case II

Wm = ¢k + WQ -9

To examine the physical meaning of this condition,
we can write HWW as:

* . aﬁ; n o
WW = Ui,QUj,k —gyf— rdr =R - S
0

= |R]|S| cos (y) (2.7

> >
Where R and S are vectors representing the
radially-averaged stresses and strains, respec-
tively. The condition stated in Eg. (2.9) is thus
equivalent to requiring the wave-induced stresses
and the wave-induced strains to be in-phase. Equa-
tion (2.10) indicates that this angle plays an
essential role in the subharmonic resonance. If
y = 0°, we obtain maximum positive energy transfer
to the output wave resulting in the resonance con-
dition. If y = 180°, we obtain maximum energy
drain from the output wave resulting in suppress-
ing the output wave. This latter situation is
observed experimentally as the "vortex-shredding"”
(e.g., Monkewitz, 1987). If y = 90°, ww = O which
indicates negligible interactions and that the
m-wave develops as if the other two waves are
almost not present.

The conditions for resonance interactions can
thus be summarized as follows:

Wy = Wk - Wy, Nm = Nk - Ng, h

Ym = Yk - ¥ - ©
or l (2.11)
wp = wg + @y, Ng o= Ng + Nk,

Ym o= Wk t ¥ - O

P

The conditions on the frequency and on the azi-
muthal number are identical to those given by Cohen
and Wygnanski (1987). However, the condition on
the phase angle is different from that on the wave
numbers given by Cohen and Wygnanski. Unlike Cohen
and Wygnanski's (1987) analysis, the present analy-
sis does not require the flow to be nondiverging or
that the waves to be weakly nonlinear. To examine
the relations between the present result and that
of Cohen and Wygnanski, we consider the axisymmet-
ric case of fundamental-subharmonic interaction.
The present condition on the phase angle reduces to
the form:

Yy =2¢y5 -yf +0=0 (2.12)
where the subscript f denotes the fundamental of
frequency 2w and s denotes the subharmonic of
frequency w. If we take the phase angle to be



approximately given by the linear stability
theory, Eq. (2.12) can be written as:

Zars,(_arfxwo+q=o (2]3)

where a is the real part of the complex wave
number obtained as the eigenvalue of the linear
stability equation. o 1is the phase angle by
which the fundamental initially leads the subhar-
monic. The corresponding condition given by Cohen
and Wygnanski is:
2arg - arf =0 (2.14a)

t can be shown that the above condition is equiva-
lent to requiring equal phase velocities. Cohen
and Wygnanski's condition (Eq. (2.142)) and the
present condition (Eq. (2.13)) becomes identical
under the following conditions: (1) the linear
stability theory provides a valid approximation to
the phase angles of the waves, (2) the initial,
phase difference between the two waves is ignored,
and (3) the phase angle of Iy, o, is set identical
to zero.

The ability of the linear stability theory to
represent the axial varjation of the phase angles
will be examined later on in this work. The effect
of initial phase difference on the subharmonic res-
onance cannot be ignored. Monkewitz's (1987)
observaticns for a two-dimensional shear layer
under two-frequency excitation clearly indicates
that the initial phase-difference controls the sub-
harmonic resonance. The variation of the angle (o)
along the jet was shown in Fig. 1. The figure
clearly indicates that this angle varies considera-
b'y along the jet and cannot be set equal to zero.

Cohen and Wygnanski (1987) attempted to demon-
strate experimentally the condition given by
Eg. (2.14). A jet was excited at 288 Hz and the
subharmonic at 144 Hz was found to amplify. When
the excitation frequency was changed to 144 Hz the
corresponding subharmonic at 72 Hz was not ampli-
fied. Since the 288 Hz wave and the 144 Hz wave
have the same phase speed while the 144 and 72 Hz
do not, they concluded that this supports the
condition given by Eq. (2.14). However, the ampli-
fication of the subharmonic at 144 Hz can be
explained from the linear theory since in their
experiment the 144 Hz corresponded to the most
amplified wave while the 72 Hz corresponded to a
weakly amplified wave. This fact, and not the
equality of the phase velocities, can therefore
explain the subharmonic resonance when the jet was
excited at 288 Hz.

Actually Cohen and Wygnanski's (1987) data
provide an example which clearly violates the con-
dition of Eq. (2.14) which for the general case
takes the form

am = ak t ag (2.140)
In their Fig. 7(c) a jet was excited at two fre-
quencies 238 and 192 Hz. A wave corresponding to
the difference 96 Hz was amplified. If one substi-
tutes the wave numbers (a,) as obtained from the
linear stapility theory corresponding to these fre-
quencies, Egq. (2.14b) is about 50 percent in error.
This suggests that their condition on the wave num-
bers (Eg. 2.14b), is only an approximate one.

In the following we attempt to demonstrate
experimentally that the phase-angle, not the phase
velocity, controls the subharmonic resonance.

Experimental Apparatus and Procedure

The jet facility contains a 76-cm diameter
plenum chamber, a two-stage contraction followed
by an 8.8-cm diameter nozzle. A 4l-cm diameter
section located between the two contracting sec-
tions contains the excitation system, which
consists of two Ling drivers. These Ling electro-
pneumatic drivers were used to produce the high
excitation amplitude required for the present set
of tests. These drivers have an electro-
dynamically operated pneumatic valve capable of
reproducing sine, random or any complex wave form
and can generate up to 4000 W of acoustic power
per driver within the operating range. A polynomi-
nal wave form synthesizer is used to produce the
two frequencies at the desired initial phase-
difference. The wave form synthesizer generates
wave shapes from user supplied mathematical
expressions.

The phase-difference, B, in the experiment is
defined with respect to the fundamental, i.e.,

Uf ~ sinCeft + B)
(3.1
g ~ sinfugt)

Experimental Results

Since the purpose here is to examine the
effect of varying the initial phase-difference, it
is necessary to show that the other inifial parame-
ters are kept constant. The exit profiles of the
mean velocity and the total fluctuations are shown
in Fig. 2 for a Strouhal number pair of 0.2 and
0.4. Both the unexcited and the excited cases at
Bo = 90° and 270° are shown for a Strouhal number
pair of 0.2 and 0.4. The figure shows that the
initial mean velocity profile for both the excited
and the unexcited cases are the same. The exit
momentum thickness is 0.015 R, where R 1is the
nozzle's radius. For the unexcited case the turbu-
lence intensity at the jet centerline and boundary
layer are 2 and 8 percent, respectively. Since
these total fluctuations are composed of the back-
ground turbulence as well as the imposed waves, the
total fluctuations for the excited case increases
over that of the unexcited case due to the imposed
waves. For the excited case the figure indicates
that the levels of the imposed fluctuations are the
same for the fg = 90° and the By = 270° cases.

Dependency of the subharmonic's ampliification
on the initial phase-difference. The phase-averaging
technigue is used to educt the fundamental and the
subharmonic components along the centerline of the
jet. The fundamental and subharmonic axial veloci-
ties along the jet centerline are shown in Fig. 3
for several initial phase-differences. The funda-
mental is not sensitive to the initial phase-
difference but the amplification of the subharmonic
is quite sensitive to the initial phase-difference.
This is demonstrated further in Fig. 4 which is a
polar plot of the subharmonic’s peak against the
fnitial phase angle. The figure shows that the sub-
harmonic is maximum at an initial phase-difference




of 270° and is minimum at 90°. The initial phase-
difference can thus result in either a subhar-
monic’'s resonance or a subharmonic's suppression.

One of the findings of the energy considera-
tions in the previous section is that the wave-wave
energy exchange mechanism is proportional to
EcvEr, (Eg. (2.8)). Thus, this mechanism is
important only when the product Eg+/Ef exceeds a
certain level. This fact is demonstrated in Fig. 5
by increasing the fundamental level from 1 to
7 percent. The subharmonic-fundamental initial
ratio is kept at 1:15. Thus, in Fig. 5 both the
subharmonic's level and the fundamental's level are
increased and hence Eg+/Ef 1is also increased.

The initial phase-difference is kept at 270°. Fig-
ure 7 clearly indicates that the subharmonic's
amplification increases with increasing the prod-
uct of the energies Eg+/Ef, in accordance with

£g. (2.8)).

Development of the phase-difference. In the
present section we examine the development of the
phase-difference along the jet and its dependency
on the initial conditions.

The phase-difference minus the initial phase-
difference, B - Bg, is shown in Fig. 6 as a contin-
uous function of x/D. The Strouhal numbers are
0.2 and 0.4, Mach number 0.45, f = 7 percent,

J¢ = 0.5 percant. The figure shows that the devel-
opment of the phase-difference along the jet is
highly infiuenced by its initial value. This indi-
cates that tne development of the phase-difference
is a nonlinear process. In a linear theory, the
phase angles are given by the local mean flow
parameters irrespective of the initial conditions.
The momentum thickness along the jet for RBg = 90°
and 270° are shown in Fig. 7. The two values of
Bo correspond to the maximum and minimum subhar-
monic amplification. The figure shows that the
local momentum thickness is almost the same for
both values of Bg. Since in a linear theory, the
phase angle is determined by the local mean flow
parameters (irrespective of the initial condi-
tions). The fact that the momentum thickness is
almost the same for both initial phase-differences
indicates that a linear theory cannot be used to
predict the development of the phase-difference
along the jet.

To examine further the nonlinearity of the
phase angles, the initial level of the fundamental
is varied from 1 to 7 percent of the jet exit
velocity. The ratio of the subharmonic to the fun-
damental at the exit is kept almost constant at
1:15. Figure 8 shows that the initial level of
the fundamental has a pronounced effect on the
development of the phase-difference particularly
for x/D » 2.

Prediction of the nonlinear development of the
phase-difference

The noniinear development of the phase angle
was considered by Mankbadi (1986) for a laminar
jet. The wave components are taken in the form:
e = FF(x)uF(r) exp(-iwft + wo) + C.C.

u
5

ug and ug are the eigenfunctions obtained from
the soluticon of the linearized inviscid momentum

4.1

1]

F (ou_(r) expl-fw t) + C.C.

equations for each wave component at the corre-
sponding frequency. Fg(x) and Fgq(x) are the
complex amplitudes of the fundamertal and subhar-
monic, respectively, which can be written as:

Frox) Z(EFOx elvf
(4.2)

FoO) =/Eg(x) el¥s

Comparing Eq. (4.1) to the definition of the phase-
angle in the experiment, (Eq. 3.1), the relation
between B and ¢ 1is given by:

3= -[!Pf,- - WS + (Af - AS) + Wo].

which gives Rg = -(af - 85 + ygo), where A&
denotes the phase angle of the eigenfunction u.

The eigen functions are normalized such that Ef
and E¢ represent the energy of each wave inte-
grated across the jet. The equation governing the
nonlinear development of the phase angle of the
subharmonic is obtained as follows. The nonlinear-
ized x-momentum equation of the total periodic
velocity component is multiplied by F;u; exp(iwt),

where (*) denotes a complex conjugate. The
y-momentum equation is similarly multiplied by
Fs(x)v; exp(iwt) and the x- and y-equations are

added and time-averaged. This equation is simpli-
fied by applying the usual boundary-layer-type
approximations to the mean quantities. The result-
ing equation is then subtracted from its complex
conjugate. A similar procedure is used to obtain
an equation for the fundamental's phase angle. The
final equations are given in Mankbadi (1986) as:

Fundamental:

dwf

Icf x - wa + G(Sf,e)

E
s .
- — ‘Iw' sin (Zq;S SR T IR N o) (4.3)

VE:

Subharmonic:

dws
cs dx - 'n'SS + G(Ss,e)

+ \/Ef |le sin <2q.vS o I o) (4.3
where:

© ~n Q_Q

G = Imlf uv ar r dr} R
0
-1

o = tan [Im(IH)/Re(IN)]

The solution of Eq. (4.3) is subject to the ini-
tial values of the phase angles.

To compare the results of this nonlinear
theory with the observations, the energies of the
two waves Ef(x) and Eg(x) are estimated from the
measurements of the fundamental and subharmonic



selccities for a given set of initial conditions
and are used as specified functions in solving
Eq. (4.3).

The solution of Eg. (4.3) for initial phase-
differences of 90° and 270° is compared with the
corresponding experimental data in Fig. 9. Since
*his is a nonlinear theory, the development of the
ohase-difference depends on the magnitude of each
wave component and hence on the inttial conditions
which are taken from the experiment. The figure
shows that the prediction of the present nonlinear
theory ccmpares favorably well with the data. The
~heory indicates that the phase-difference
increases along the jet and is larger at B = 90°
than the corresponding phase-difference at
Bo = 270°. The same features are exhibited in the
measured data. The prediction of the phase-
difference i5 also compared with the measured data
in Fig. 10 for a Strouhal number pair of 0.3 and
N0.6. The figure shows reasonably well comparison
between theory and observations. However, the
theory dces not quite match the experiment. As x
increases the turbulence intensity increases. The
present theory ignores the background turbulence
which accounts for the deviation between the theory
and the observations.

Conclusions

The corditions for subharmonic's resonance in
1 two-frequency excitation of a round jet were
investigated. The data indicate that the subhar-
monic resonance is strongly dependent on the ini-
tial phase-difference between the two imposed
Javes. Subharmonic's resonance is viewed in terms
of the energy transfer from the fundamental to the
subharmonic. This energy transfer is optimum when
the subharmenic-induced stresses are in-phase with
the fundamental induced strain. The initial phase-
difference between the two imposed waves controls
the stress-strain angle and determines whether the
fundamental-subharmonic interactions would result
in enhancing or suppressing the growth of the
subharmonic.
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FIGURE 1. - THE WAVE-WAVE INTEGRAL I,
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FIGURE 2. - THE EXIT PROFILES OF THE MEAN
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FIGURE 3. - PHASE-AVERAGED FUNDAMENTAL'S AND SUBHARMONIC'S AXIAL VELOCITY

COMPONENTS AT SEVERAL INITIAL PHASE-DIFFERENCES.
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FIGURE 4. - POLAR PLOT OF THE MAXIMUM OF THE SUBHARMONIC
AS A FUNCTION OF THE INITIAL PHASE-DIFFERENCE.
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FIGURE 5. - DEPENDENCY OF THE SUBHARMONIC'S AMPLIFICATION ON THE INITIAL
LEVELS. MACH NUMBER = 0.45 AND STROUHAL NUMBER PAIR = 0.2 AND 0.4 AT

B, = 270°.
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FIGURE 6. - MEASURED PHASE-DIFFERENCE BETWEEN THE TWO WAVES FOR SEVERAL
INITIAL PHASE-DIFFERENCES.
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FIGURE 7. - THE LOCAL MOMENTUM THICKNESS UNDER TWO-
FREQUENCY EXCITATIONS AT B = 90° AND B, = 270°.
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FIGURE 8. - EFFECT OF THE INITIAL LEVEL OF THE FUNDAMENTAL ON THE DEVELOPMENT OF THE
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FIGURE 9. - COMPARISON BETWEEN PREDICTED AND MEASURED
PHASE-DIFFERENCE FOR B = 907 AND B, = 270°. OTHER
INITIAL CONDITIONS ARE THE SAME AS IN FIGURE 4.
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FIGURE 10. - COMPARISON BETWEEN PREDICTED AND MEASURED
PHASE-DIFFERENCES ALONG THE JET FOR A STOUHAL NUMBER
PAIR = 0.3 AND 0.6. () B, = 90°. (b) B, = 180°.
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